

High Rise Energy Saving Damper – Model HREC

Features – HREC is designed for maximum energy efficiency and ease of installation. Compact design that can be adjusted for job specific CFM. Actuator is accessible from the front of the unit. It is installed behind the grille and drywall 1/2", 5/8", 3/4" and it is ideal for new construction or existing

STANDARD CONSTRUCTION

FRAME

3-5/16" (110) deep, 20 gauge (1.0) galvanized steel.

BLADE

Single blade, 20 gauge (1.0) galvanized steel

MOUNTING FLANGE

For 5/8" (16) thick drywall (drywall by others)

BLADE & JAMB SEALS

Neoprene seals & stainless steel jamb seals

BLADE AXLES & BEARINGS

AXLES – 5/16" (8) round mechanically fastened to blade BEARINGS – Bronze oil impregnated

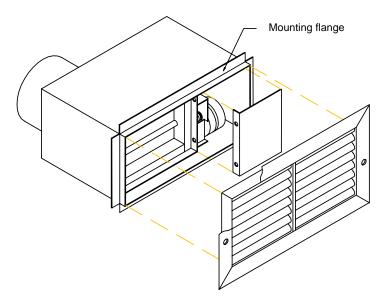
LINKAGE

Plated steel concealed in jamb

MAXIMUM SIZE

16"W x 12"H (406 x 305) OD.

MINIMUM SIZE

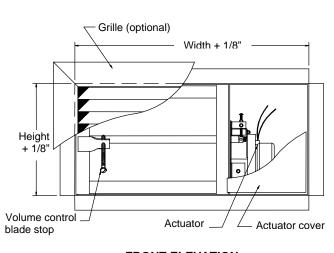

8" W x 6" H (203 x 152) OD.

FINISH

Galvanized

ACTUATOR

UL listed, Electric 24V - 120V


ISOMETRIC VIEW

OPTIONAL CONSTRUCTION

SPECIFIED MATERIAL – Heavier gauge galvanized steel, aluminum or stainless steel

DUCTWORK CONNECTION – Transitions from 4" (102) to 8" (203) diameter.

MOUNTING FLANGE - Available in 1/2" or 3/4" thick drywall.

8" deep sleeve 5/8" drywall - std. Duct (optional 1/2" or 3/4") collar Grille by (optional) Round transition Adjustable −2-1/4"-- volume damper 5/8" drywall - std. (optional 1/2" or 3/4") **VERTICAL SECTION**

FRONT ELEVATION

DATE		ARCHITECT / ENGINEER			CUSTOMER	
PROJECT						
ITEM	OT)	,,,	l		TAG	
	QTY	W	w H		IAG	

DEPENDABLE PRODUCTS SINCE 1955

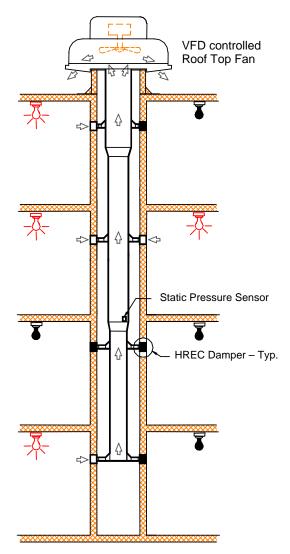
SAFE-AIR / DOWCO

Engineering and General Offices

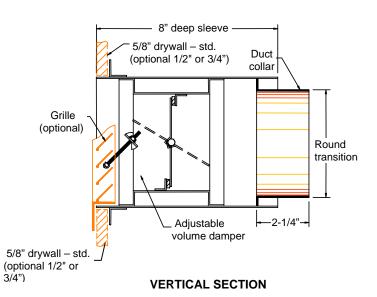
1855 South 54th Avenue / Cicero, Illinois 60804

Phone: 708-652-9100 FAX: 708-652-9158

The Safe-Air HREC is an exhaust air automatic damper that opens and closes by operation of a light switch, motion detector, etc; that is located in the room being exhausted.


Unlike traditional constant volume exhaust systems, the quantity of air being exhausted from the building is dynamic, determined by the number of automatic dampers that are open. The HREC operates only when switched on. When it is not being used, there is no air being exhausted from it. A static pressure sensor located in the main exhaust duct controls the exhaust fan speed through a variable frequency drive to maintain a given duct pressure.

Benefits of the HREC include:


- The quantity of conditioned air being exhausted from the building is reduced since the system is dynamic and the exhaust fan does not run continuously at full speed. The exhaust fan will vary the CFM to maintain the riser pressure, by means of the VFD, as the HREC dampers open and close.
- When using dampers, diversity in sizing the exhaust duct is allowed by various codes saving on material and labor, and reducing riser sizes, which increase the rentable to sellable square footage due to a smaller exhaust duct.
- Since the air is not being exhausted as a constant volume system at maximum design cfm, the required amount of make-up air supplied to the building can be reduced accordingly. This results in a savings of material, and labor, and more importantly, energy.

FRONT ELEVATION

BUILDING SHAFT

